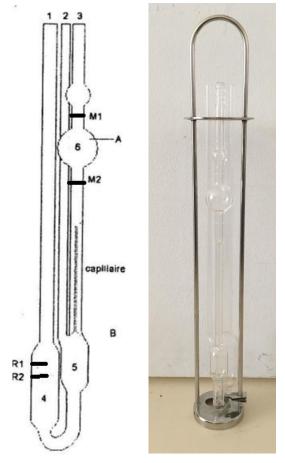
Mesure de la viscosité d'un liquide - viscosimètre d'Ubbelohde

Matériel nécessaire :

Tube de Ubbelholde + support+ bouchons+ propipette

Bain thermostaté


Bécher + érpouvette graduée 25 ml

Une mesure nécessite environ 20 ml de produit

1. Description de l'appareil

Le viscosimètre d'Ubbelohde comprend 3 tubes communicants

- un tube de remplissage (1) avec réservoir inférieur (4) muni de 2 repères (R1 et R2), le niveau de liquide doit être entre ces repères à la fin du remplissage
- un tube de ventilation (2), il assure la pression atmosphérique P0 dans le réservoir de détente (5) et donc à la base du capillaire (en B).
- un tube de mesure (3), il comprend un capillaire (tube très fin surmonté d'une boule de mesure (6) entourée des repères de mesure (M1 et M2).

les tubes du viscosimètre sont fragiles et $\ couteux\ (400\ \mbox{\ensuremath{\&omega}})$ -) -

- Ne jamais tenir le viscosimètre par les trois tubes à fois lorsqu'on met un bouchon ou qu'on met/retire une propipette, mais seulement par le tube correspondant (risque d'appuyer trop fort et de briser un tube) ;
- Ne jamais laisser, hors du bain thermostaté, le viscosimètre dans son support métallique à la verticale, soit le tenir à la main, soit le coucher (si vidé) (risque de basculement)
- Être soigneux et délicat en particulier lors des phases de remplissage et de rinçage, où le viscosimètre est retiré de son support.
- Faire aussi attention à ne pas égarer les bouchons des tubes.

2. Protocole expérimental

- avant chaque mesure, rincer le tube avec la solution à étudier.
- après chaque mesure, rincer le tube à l'eau distillée.
- -Glisser les extrémités des tubes dans les trous du support . puis bloquer le bas du tube avec la petite pince métallique . coucher le tube dans l'emballage pour éviter de le voir basculer et se casser ! ,
- le viscosimètre étant dans son support et les tubes ouverts, en le maintenant soigneusement, remplir au bécher le réservoir (4) jusqu'à un niveau situé entre R1 et R2.
- placer l'ensemble dans le bain thermostaté (25°C), à la verticale, attendre 5 min minimum.
- boucher le tube de ventilation (2) et utiliser une propipette sur le tube de mesure (3) pour faire monter le liquide dans le capillaire <u>jusqu'au-dessus</u> du repère M1(environ 5 mm au dessus) .soyez patient, ça monte tout seul mais lentement dans le capillaire
- boucher le tube de remplissage (avec le doigt) et retirer la propipette, boucher un autre doigt .
- chronomètre en main, retirer les bouchons (et/ou les doigts) : le liquide s'écoule ;
- mesurer le temps Δt nécessaire pour que la surface libre du liquide (point A) passe de M1 à M2.
- calculer la viscosité du liquide avec la relation théorique (voir le 3.).
- retirer le viscosimètre du support, le vider , le rincer et le ranger soigneusement dans son carton .

3. Principe

L'écoulement est assez lent dans le capillaire pour y suivre la loi de Poiseuille :

$$D_{v} = \frac{\pi R^{4}}{8\eta L} \Delta P \quad \text{avec } \Delta P = P_{A} - P_{B} + \rho g(z_{A} - z_{B}) = \rho gh \ car P_{A} = P_{B} = P_{atm}$$

Dv: débit volumique R : rayon du capillaire L : longueur du capillaire

 η : viscosité (dynamique) du fluide ρ : masse volumique du liquide

A : à la surface libre (évolue de Ml à M2) B : à la base du capillaire

Dv = dV/dt V le volume s'écoulant, on isole dt et on intègre $\Delta t = \frac{8\eta L}{\pi \rho g R^4} \int \frac{dV}{h}$

dV = -S(h)dh où S(h) est l'aire de la section du tube de mesure en A (- car dh < 0), doncon peut donc écrire :

$$v = \frac{\eta}{\rho} = K \Delta t$$
 avec
$$K = \frac{\pi g R^4}{8L \int -S(h) \frac{dh}{h}}$$

K est une constante géométrique du tube,.

Un étalonnage du tube par le constructeur a permis de connaître la valeur de K, marquée sur le carton du viscosimètre. (K en mm^2/s^2)

2

4 Matériel disponible au lycée

En fonction de la constante K, la durée Δt sera plus ou moins grande.

Pour que les mesures effectuées soient possibles et correctes, il convient de choisir le tube en fonction de la viscosité du liquide à étudier .

Le constructeur donne ce tableau pour vous aider à choisir le « bon »tube parmi ceux donc nous disposons.

Attention, la viscosité cinématique v est donnée dans le tableau du constructeur en mm²/s

Nous disposons de tubes de constantes K environ égales à : (mm^2/s^2)

0.005 (-1(
0.005 (adapté pour solutions aqueuses)
0.03
3
10

Constante K (env.)	Gamme de mesure [mm²/s] (conseillée)			
0,001	0,3	,,,	1	
0,003	0,5		3	
0,005	0,8		5	
0,01	1,2		10	
0,03	3		30	
0,05	5		50	
0,1	10		100	
0,3	30		300	
0,5	50		500	
1	100		1000	
3	300		3000	
5	500		5000	
10	1000		10000	
30	3000		30000	
50	6000		30000	
100	plus de10000			

Une fois le tube choisi, veillez à bien noter précisément la constante K indiquée sur le carton d'emballage